Adaptive fuzzy partitions for evolving association rules in big data stream
نویسندگان
چکیده
منابع مشابه
Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions
The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...
متن کاملFuzzy Clustering for Finding Fuzzy Partitions of Many-Valued Attribute Domains in a Concept Analysis Perspective
Although an overall knowledge discovery process consists of a distinct pre-processing stage followed by the data mining step, it seems that existing formal concept analysis (FCA) and association rules mining (ARM) approaches, dealing with many-valued contexts, mainly focus on the data mining stage. An “intelligent” pre-processing of input contexts is often absent in existing FCA/ARM approaches,...
متن کاملOn-line elimination of local redundancies in evolving fuzzy systems
In this paper, we examine approaches for reducing the complexity of evolving fuzzy systems (EFS) by eliminating local redundancies during training, evolving the models on on-line data streams. Thus, the complexity reduction steps should support fast incremental single-pass processing steps. In evolving fuzzy systems, such reduction steps are important due to several reasons: 1.) originally dist...
متن کاملEvolving association streams
The increasing bulk of data generation in industrial and scientific applications has fostered practitioners’ interest in mining large amounts of unlabeled data in the form of continuous, high speed, and time-changing streams of information. An appealing field is association stream mining, which models dynamically complex domains via rules without assuming any a priori structure. Different from ...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 93 شماره
صفحات -
تاریخ انتشار 2018